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FOREWORD

This document is one of sixteen sections that comprise the final
report prepared by the Minneapolis-Honeywell Regulator Company for the
National Aeronautics and Space Administration under contract NASw-563.
The report is issued in the following sixteen sections to facilitate
updating as progress warrants:

1541-TR 1

1541-TR 2

1541-TR 3
1541-TR 4
1541-TR 5

1541-TR 6

1541-TR 7
1541-TR 8
1541-TR 9

1541-TR 10

1541-TR 11

1541-TR 12

1541-7TR 13

1541-TR 1k

1541-TR 15

154k1-TR 16

Summary

Control of Plants Whose Representation Contains Derivatives
of the Control Variable

Modes of Finite Response Time Control
A Sufficient Condition in Optimal Control
Time Optimal Control of Linear Recurrence Systems

Time-Optimal Bounded Phase Coordinate Control of lLinear
Recurrence Systems

Penalty Functions and Bounded Phase Coordinate Control
Linear Programming and Bounded Phase Coordinate Control
Time Optimal Control with Amplitude and Rate Limited Controls

A Concise Formulation of a Bounded Phase Coordinate Control
Problem as a Problem in the Calculus of Variations

A Note on System Truncation

State Determination for a Flexible Vehicle Without a Mode
Shape Requirement

An Application of the Quadratic Penalty Function Criterion
to the Determination of a Linear Control for a Flexible Vehicle

Minimum Disturbance Effects Control of Linear Systems with
Linear Controllers

An Alternate Derivation and Interpretation of the Drift-Minimum
Principle

A Minimax Control for & Plant Subjected to a Known Load Disturbance

Section 1 (1541-TR 1) provides the motivetion for the study efforts

and objectively discusses the significance of the results obtained.

The

results of inconclusive and/or unsuccessful investigations are presented.
Linear programming is reviewed in deteil adequate for sections 6, 8, and 16.

Tt is shown in section 2 that the purely formal procedure for synthe-
sizing an optimum bang-bang controller for a plant whose representation
contains derivatives of the control variable yields a correct result.
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In section 3 it is shown that the problem of controlling m components
(L < m < n), of the state vector for an n-th order linear constant coefficient
plant, to zero in finite time can be reformulated as a problem of controlling
a single component.

Section 4 shows Pontriaginfs Maximum Principle is often a sufficient
condition for optimal control of linear plants.

Section 5 develops an algorithm for computing the time optimal control
functions for plants represented by linear recurrence equations. Steering
may be to convex target sets defined by quadratic forms.

In section 6 it is shown that linear inequality phase constraints
can be transformed into similar constraints on the control variables.
Methods for finding controls are discussed.

Existence of and approximations to optimal bounded phase coordirnate
controls by use of penalty functions are discussed in section T.

In section 8 a maximum principle is proven for time-optimal control
with bounded phase constraints. An existence theorem is proven. The
problem solution is reduced to linear programming.

A backing-out-of-the-origin procedure for obtaining trajectories for
time-optimal control with amplitude and rate limited control variables is
presented in section 9.

Section 10 presents a reformulation of a time-ontimal bounded phase
coordinate problem into a standard calculus of variations problem.

A mathematical method for assessing the approximation of a system by
a lower order representation is presented in seciion, ll.

Section 12 presents a method for determination of the state of a
flexible vehicle that does not require mode shape information.

The quadratic penalty function criterion is applied in section 13 to
develop a linear control law for a flexible rocket booster.

In section 1l a method for feedback control synthesis for minimum load
disturbance effects is derived. Examples are presented.

Section 15 shows that a linear fixed gain controller for a linear
constant coefficient plant may yield a certain type of invariance to
disturbances. Conditions for obtaining such invariance are derived using
the concept of complete controllability. The drift minimum condition is
obtained as a specific example.

that minimizes the effects of a known load disturbarnce.
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MODES OF FINITE RESPONSE TIME CONTROL*

by C. A. Harvey

ABSTRACT J 1S 6

A linear autonomous system with a single control variable is
considered. There are, in general, several modes of finite response
time control for such a system. The concepts of single component
regulation and multiple component regulation are defined. It is
then shown that a multiple component regulation problem can be
transformed into a single component regulation problem. Thus it is
possible to express any of the modes of control considered as control

of a single input, single output system. R s

INTRODUCTION
The system considered 1s represented by the vector differential
equation
x(t) = Ax(t) + bu(t) (1)
where dot denotes differentiation with respect to time, t,
x(t) 1s a column vector with elements xl(t),xe(t),...,xn(t)
which describe the state of the system,
u(t) 1is a scalar control variable,
A is a constant nxn matrix, and
b 1is a constant column vector.
It is assumed that the system (1) is completely controllable.
This means that for any initlal state of the system there exists a
control defined on a closed finite interval of time [0,T] such

- ————— A — - —— - ————— o —

*  Prepared under contract NASw-563 for the NASA.

i Senior Research Scientist, Minneapolis-Honeywell Regulator Company,
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that the state of the system arrives at the zero state (x=0) at
the time T. It is known (reference 3, pp. 483-484) that a necessary
and sufficient condition for complete controllability of the system

n-1

(1) is that the vectors b, Ab,...,A  ~b are linearly independent, i.e.,

det|b, Ab,...,AR Tb|# O

Single component regulation is defined as control of the system
such that one component of the state vector is transferred to zero
in a finite time and held zero thereafter. Multiple component
regulation is defined as control of the system such that more than
one component of the state vector are transferred to zero in a finite
time and held zero thereafter. As an example of a particular type
of multiple component control a time optimal multiple component
regulation problem could be defined when u(t) is constrained in
amplitude as follows: for any initial condition find a control
satisfying the amplitude constraint on the interval (0,«) such that
the components to be controlled are transferred to zero in the
minimum time such that they may be held at zero thereafter. The time
optimal single component regulation problem was first discussed by
Schmidt (reference 5, 40-69) and was later treated by Harvey and
Lee (references 1, 2, 4).

The definitions of single component and multiple component
regulation given above are somevhat ambiguous and are not mutually
exclusive. It 1s possible in some cases to state the same control
problem as a single component or as a multiple component regulation

problem. For example, conslder the system



Xy 1 o 1 !x
. i=£ | +
X5 i ; 0 0 x

The single component regulation problem of controlling Xy is the

same as the multiple component regulation problem of controlling Xq

n gince X, = i
and Xx, 2 1

is that X5 be held at zero. Thus, whether this particular control

problem is viewed as a single or multiple component regulation

and a necessary condition for holding X at zero

problem depends on the desire of the analyst.

The following section is devoted to a constructive proof of this
paper’s principal result:

Given a multiple component regulation problem, there exists a
linear transformation of the state space such that the given problem
is a single component regulation problem in the transformed state
variables.

This result makes possible the application of the theory re-
lated to time-optimal single component regulation (references 1, 2, 4,
5) to time~optimal multiple component regulation. Also, the result
allows the control engineer faced with a multiple component
regulation problem to reformulate the problem as a single input,

single output problem with which he may have more familiarity.

DEVELOPMENT OF TRANSFORMATIONS
Consider the following multiple component regulation problem

for the system (1). Suppose that the components xl,x2,...,xm,

1 <m< n are to be controlled, i.e., given an arbitrary initial

condition x(0) = x°, find a control u(t), O < t, depending on x°,
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such that the corresponding solution of (1) satisfies
xl(t) = xe(t) = eeam xm(t) = 0 for t > T for some real number T
which may depend on x°

For convenience the following notation is introduced. The
vector x will be partitioned into two vectors &l and 52 with

1 W{:Z ! /
£, = (xl,xz,...,xm) and 52 = (xm+l’z?;2}’ﬁ"xn) where ~ denotes

transpose. Also the vector b will be rtitioned into two vectors

/ /
By = (bl,bg,...,bm) and B, = (bm+l,bm+2,...,bn) . T.he matrix A
will be partitioned into four submatrices, Al’ A2,‘A3, and Au with

Al=laijl,lgigm,lgjg_m;A2=laijl,l_gigm,m+1gj<n;

A IaiJI,m+l_gi_<_n,1§J_§_m; Au=|aijl,m+1<i<n,

3:
m+l < j < n. Then the equation (1) can be written as

) = A8y + AE, + Byu
(2)

The following theorem, which 1s evident from an examination
of equation (2), is readily established:
THEOREM 1. If the system (1) is completely controllable, then A,
and Bl are not both zero.
PROOF: Suppose that A2 and Bl are both zero. Then it is easy to
show that the vector Akb has zeros for its first m elements, with k
a nonnegative integer. Thus the matrix |b, Ab, ..., An-lbl has m
rows of zeros and hence its determinant is zero, a contradiction.

It may occur, as in the example cited in the introduction, that
the control of ﬁl implies the control of certain linear combinations

of components of 62. To examine this possibility, consider the re-

quirement that &l(t) = 0 for all t > T for some time,T. From the



system (2) it is clear that for t > T:

0 = Ay, + Byu

(3)

6, = Ayf, + Byu

1f 61 = O then A2§2 = 0 for t > T. Hence control to the sub-
space defined by &1 = 0 implies control to the subspace, él = 0,
defined by ﬁl = 0 and A2€2 = Q. él may be obtained by adjoining to
ﬁl the linearly independent elements of A2€2. The problem may then
be restated with ﬁl and §2 (the projection of x onto €l = 0) re-
placing &l and 52. The matrices Al’Ae’A3’Au and the vectors Bl and
52 would of course have to be replaced with corresponding matrices
and vectors. 1In case f; # 0 it is clear from (3) that
u = - B} Ax§, /liByi® and hence (B[® A, - B1PIA;)E, = O. As in
the case when 51 = 0 the problem can be reformulated with x partitioned
into vectors El and €é. These procedures may be repeated until it is
found that control to the subspace &1 = 0 does not imply control to
any smaller subspace. The number of reformulations is finite and is
in fact less than or equal to n-m.

Now let us assume that the problem stated at the beginning of
this section is the result of necessary reformulations so that control
to the subspace, 51 = 0, does not imply control to any smaller sub-

space. This hypothesis guarantees that
= ’ i 2
B, # 0 and A, = B,BlA, /B2, (&)
To show this suppose that Bl = 0. Then, since the system is assumed

to be completely controllable, Ag,% 0 and control to the subspace,

€. = 0, implies control to the smaller subspace, §, = O and A €, = O,
1 1 222
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which contradicts our hypothesis. Thus 61 Z 0 and hence

A, = 6151A2//H51H2, because if this were not the case control to
the subspace, &l = 0, would imply control to the smaller subspace,
gl = 0 and (A2 - BlﬁiAQ//HBlHZ)ﬁe = 0 which contradicts our
hypothesis.

With condition (4) established, the system (2) will be trans-
formed into a particular form, in which it 1is evident that the problem
is a single component control problem. Let z = Sx where S is an nxn
matrix partitioned into the submatrices 31,82,83 and Su in the same
manner that was used in partitioning A. The matrices 82 and S3 are
zero matrices of appropriate size and 84 is the (n-m)th order identity
matrix. The matrix S1 is defined indirectly by defining a matrix
denoted by Sil and the nonsingularity of Sil is established in:
THEOREM 2. If the system (1) is completely controllable and (4) is

satisfied, then Szl is nonsingular, where Sil is defined as

m-1 m-2
S17 = 1Ay Py Ay By e RgByuRy |
The proof of this theorem will be given following the proof of
theorem 3, Partitioning the vector z into m and n-m vectors Cl and
C2, the transformation may be written as cl = Slgl’c2 = ﬁe.
The transformed system is

I

-1
£y = S51A95,78; + S1AL, + 5.B5u

,

(5)

It

-1
The matrix Sl has the property that 3151 is a unlt vector with its
first m~1 elements zero. From this result and condition (4) it is

clear that the first m-1 rows of SlA2 are zero and the last row is



~T -

/ , -1 .
BlAe//Halhz. The matrix S;A;S;” has ones on the super diagonal,
the first column is a vector gjand all other elements are zero.

The elements Cy satisfy

Am—i

A = ci 1

=

i=1
These properties of SlBl and SlAlSi1 will be verified following the
proof of theorem 2.

From the form of (5) it is easy to establish:

THEOREM 3. Regulation of zq (the first component of z) is equivalent
to the regulation of Cl’

PROOF: Clearly, regulation of Cl implies regulation of Z;- From

(5), Zypeyl = ék - ¢y Zy, k= 1,2,...,m-1. Therefore
¢’ Il € )

J=0
where z§j) denotes the Jth time derivative of Zq. Thus Cl can be
expressed in terms of Zq and its first m-1 derivatives and hence
regulation of z

1 implies regulation of Cl'

PROOF OF THEOREM 2. From the condition (4) it is clear that

AQB is a multiple of 3, for any n-m vector 8. Let Ylj and 72J

denote m and n-m vectors respectively such that

13

2o = l ! for each J > 0.
|
‘ |

Yoy

By induction it can be shown that

kA P (6)
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Denoting the matrix |Bi,A;Bys...,A] '8, by M and the matrix
|

b, Ab,...,An'lb! by N, the determinant of N may be written as:

710 Y11 ¢ ¢ Yin |
det | . Using (6), the Cayley-
Y20 Y21 o+ ¢ - Von |

Hamilton theorem and the elementary properties of determinants, this
determinant may be written as

M 0
det l where O is the mx(n-m) matrix
P Q

of zeros. Thus the determinant of N is the product of the
determinants of M and Q. The determinant of N 1s non zero since
the system (1) is assumed to be completely controllable and hence

the determinant of M is nonzero. But the determinant of M is the

determinant of Sil, so that Sll 1s nonsingular. This completes
the proof of theorem 2.
The following notation is introduced to facilitate the

verification of the properties of 8161 and SlAlsil. Let e denote

the m-vector with last element one and all other elements zero.
Let C denote the mxm matrix with the vector ¢ for its first colum?’

ones on the superdiagona%,and all other elements zero. The
m

elements cy satisfy the equation AT = 3 ciAgl-i. Recalling the
i=1

definition of Sil, it is clear that Sile = 61 since Bl is the last

column of Sil. From theorem 2, Sil is nonsingular and its inverse

is denoted by Sl' Hence, e = Slsile = Slﬁl which is the desired

1 _ g1

1 C, then

result. Similarly, if it can be verified that AlSI

slAlsil = C which is the desired result. But, clearly
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Ay S —IAIBl,Al 61,...,A§61,A151|. Upon examining the product

sllc, it can be seen that

11 l za e AT al, T 61,...,A161|.
i=

S

The vector ¢ 1s defined so that the first columns are identical.

Thus it is established that Alsi1 = silc.

REMARKS
If cl is to be held zero after the response time T it is clear
from (5) that for t > T: '
’ ,
u(t) = - By AyL,(t) /liB, I - (7)

and

Ey = (B - BBIA, /liB;12) €y (8)
If the control u(t) is required to satisfy the constraint
Ju(t)] < 1 for all t, it is necessary to consider u(t) given by (7)
and (8) with c2(T) being the initial condition for (8). Satisfying
the constraint imposes constraints on the initial condition §2(T).

It may occur that some constraints are of the form ntz(T) =
where 1 is a constant n-m vector. In this case the control of §1
implies the control to the subspace, Cl = 0, nte = 0, and the

problem may then be reformulated to be control to this subspace.

CONCLUSIONS
It has been shown that multiple component regulation problems
can be transformed into single component regulation problems for

linear constant coefficient systemgwith a scalar control input.

This permits one to view such problems as single input, single output

control problems. The development presented 1s of a constructive
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nature so that the single output of the single component formulation

of the regulation problem may be determined explicitly.
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